KLASTERISASI DATA PERTANIAN DI KABUPATEN LAMONGAN MENGGUNAKAN ALGORITMA K-MEANS DAN FUZZY C MEANS
نویسندگان
چکیده
منابع مشابه
تصحیح سیستم طبقهبندی امتیاز تودهسنگ با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means
با توجه به اهمیت و کاربرد سیستم طبقهبندی امتیاز تودهسنگ در مهندسی سنگ، هدف از این مقاله تصحیح کلاسهای نهایی این سیستم طبقهبندی با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means (FCM) است. در سیستم طبقهبندی امتیاز تودهسنگ دادهها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوتهای تجربی طبقهبندی میشوند ولی با کاربرد الگوریتمهای خوشهبندی در این سیستم طبقهبندی، کلاس...
متن کاملComparative Analysis of K-Means and Fuzzy C-Means Algorithms
In the arena of software, data mining technology has been considered as useful means for identifying patterns and trends of large volume of data. This approach is basically used to extract the unknown pattern from the large set of data for business as well as real time applications. It is a computational intelligence discipline which has emerged as a valuable tool for data analysis, new knowled...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملFuzzy c-means clustering of incomplete data
The problem of clustering a real s-dimensional data set X={x(1 ),,,,,x(n)} subset R(s) is considered. Usually, each observation (or datum) consists of numerical values for all s features (such as height, length, etc.), but sometimes data sets can contain vectors that are missing one or more of the feature values. For example, a particular datum x(k) might be incomplete, having the form x(k)=(25...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Ilmiah Teknosains
سال: 2020
ISSN: 2476-9436,2460-9986
DOI: 10.26877/jitek.v5i2.4254